Haar wavelet method for solving Fisher's equation

نویسندگان

  • G. Hariharan
  • K. Kannan
  • K. R. Sharma
چکیده

In this paper, we develop an accurate and efficient Haar wavelet solution of Fisher's equation , a prototypical reaction–diffusion equation. The solutions of Fisher's equation are characterized by propagating fronts that can be very steep for large values of the reaction rate coefficient. There is an ongoing effort to better adapt Haar wavelet methods to the solution of differential equations with solutions that resemble shock waves or fronts typical of hyperbolic partial differential equations. Moreover the use of Haar wavelets is found to be accurate, simple, fast, flexible, convenient, small computation costs and computation-ally attractive. The problems of the propagation of nonlinear waves have fascinated scientists for over 200 years. The modern theory of nonlinear waves, like many areas of mathematics, had its beginnings in attempts to solve specific problems, the hardest among them being the propagation of waves in water. There was significant activity on this problem in the 19th century and the beginning of the 20th century, including the classic work of Stokes, Lord Rayleigh, Korteweg and de Vries, Boussin-esque, Benard and Fisher to name some of the better remembered examples [15,30]. We would like to solve the well-known and classical Kolmogorov–Petrovski–Piscounov reaction–diffusion equation known as KPP equation. The solitons appear as a result of a balance between weak nonlinearity and dispersion. Soliton is defined as a nonlinear wave characterized by the following properties: (i) A localized wave propagates without change of its properties (shape, velocity, etc.). (ii) Localized wave are stable against mutual collisions and retain their identities. On the other hand, the delicate interaction between nonlinear convection with genuine nonlinear dispersion generates solitary waves with compact support that are called campactons [22,25,26]. Unlike soliton that narrows as the amplitude increases, the compacton's width is independent of the amplitude. However, when diffusion takes part instead of dispersion, energy release by nonlinearity balances energy consumption by diffusion, which results in traveling waves or fronts [14]. Traveling wave fronts are an important and much studied solution form for reaction–diffusion equations, with important applications to chemistry, biology and medicine [23]. Such solutions were first studied in the 1930s by Fisher for the scalar equation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Time Fractional Modifed Camassa-Holm and Degasperis-Procesi Equations by Using the Haar Wavelet Iteration Method

The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is...

متن کامل

A wavelet method for stochastic Volterra integral equations and its application to general stock model

In this article,we present a wavelet method for solving stochastic Volterra integral equations based on Haar wavelets. First, we approximate all functions involved in the problem by Haar Wavelets then, by substituting the obtained approximations in the problem, using the It^{o} integral formula and collocation points then, the main problem changes into a system of linear or nonlinear equation w...

متن کامل

HAAR WAVELET AND ADOMAIN DECOMPOSITION METHOD FOR THIRD ORDER PARTIAL DIFFERENTIAL EQUATIONS ARISING IN IMPULSIVE MOTION OF A AT PLATE

We present here, a Haar wavelet method for a class of third order partial dierentialequations (PDEs) arising in impulsive motion of a flat plate. We also, present Adomaindecomposition method to find the analytic solution of such equations. Efficiency andaccuracy have been illustrated by solving numerical examples.

متن کامل

Wavelet‎-based numerical ‎method‎ ‎‎‎‎for solving fractional integro-differential equation with a weakly singular ‎kernel

This paper describes and compares application of wavelet basis and Block-Pulse functions (BPFs) for solving fractional integro-differential equation (FIDE) with a weakly singular kernel‎. ‎First‎, ‎a collocation method based on Haar wavelets (HW)‎, ‎Legendre wavelet (LW)‎, ‎Chebyshev wavelets (CHW)‎, ‎second kind Chebyshev wavelets (SKCHW)‎, ‎Cos and Sin wavelets (CASW) and BPFs are presented f...

متن کامل

Solving infinite horizon optimal control problems of nonlinear interconnected large-scale dynamic systems via a Haar wavelet collocation scheme

We consider an approximation scheme using Haar wavelets for solving a class of infinite horizon optimal control problems (OCP's) of nonlinear interconnected large-scale dynamic systems. A computational method based on Haar wavelets in the time-domain is proposed for solving the optimal control problem. Haar wavelets integral operational matrix and direct collocation method are utilized to find ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 211  شماره 

صفحات  -

تاریخ انتشار 2009